Table 3. Individual Values of the Massic Energy of Combustion, $\Delta_c u^{\circ}$, for the Compounds, at T = 298.15 K

1-methyl-3-piperidinol	1-ethyl-3-piperidinol	1-methyl-4-piperidinol	Ī
	$-\Delta_{\rm c} u^{\rm o}/({\rm J} \cdot {\rm g}^{-1})$		_
34082.67	35385.57	33998.83	
34086.76	35392.81	34000.16	
34072.03	35393.47	34005.49	
34066.73	35378.82	33978.33	
34064.55	35366.63	33984.60	
34060.09	35372.96	33990.18	
	35388.60		
	$-\langle \Delta_{\rm c} u^{\circ} \rangle / ({\rm J} \cdot {\rm g}^{-1})$		
34072.1 ± 4.3	35382.7 ± 3.9	33992.9 ± 4.2	

Data Summary entry for this table

Table #: 3
System type (Pure, Binary, Ternary, Reaction): Reaction
Chemical Reaction(s): Combustion of the liquids (See eq. 1 & 2):

1-methyl-3-piperidinol
1-ethyl-3-piperidinol
1-methyl-4-piperidinol
Property: Energy of Combustion
Experimental Method: static oxygen bomb calorimetry
Combined Expanded Uncertainty (k = 2) for the Property: $2\sigma(u)$ values are given in the table
State Variables and Constraints:

temperature T = 298.15 K, pressure p = 100 MPa
Standard Uncertainty (k = 1) for Variables and Constraints: $\sigma(T) = 0.01$ K; $\sigma(p) = 1\%$

Note: There is no need to mention derived properties, such as enthalpies of formation